Dirichlet Processes in Nonlinear Mixed Effects Models
نویسنده
چکیده
Two efficient approaches are considered to deal with the difficulty in computing the intractable integrals when implementing Gibbs sampling in the nonlinear mixed effects model (NLMM) based on Dirichlet processes (DP). The first approach computes the Laplace's approximation to the integral for its high accuracy, low cost, and ease of implementation. The second approach uses the no-gaps algorithm of MacEachern and Muller (1998) to perform Gibbs sampling without evaluating the difficult integral. The two approaches are applied to real problems and simulations. Results show that both approaches perform well in density estimation and prediction and are superior to the parametric analysis in that they can detect important model features, such as skewness, long tails, and multimodality, whereas the parametric analysis cannot.
منابع مشابه
Clustering in Additive Mixed Models with Approximate Dirichlet Process Mixtures using the EM Algorithm
SUMMARY: We consider additive mixed models for longitudinal data with a nonlinear time trend. As random effects distribution an approximate Dirichlet process mixture is proposed that is based on the truncated version of the stick breaking presentation of the Dirichlet process and provides a Gaussian mixture with a data driven choice of the number of mixture components. The main advantage of the...
متن کاملMixed Membership Models for Time Series
20.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 20.1.1 State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 20.1.2 Latent Dirichlet Allocation . . . . . . . . . . . ...
متن کاملClustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm
In linear mixed models, the assumption of normally distributed random effects is often inappropriate and unnecessarily restrictive. The proposed approximate Dirichlet process mixture assumes a hierarchical Gaussian mixture that is based on the truncated version of the stick breaking presentation of the Dirichlet process. In addition to the weakening of distributional assumptions, the specificat...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملPackage ‘ DPpackage ’ March 15 , 2010
Description This package contains functions to perform inference via simulation from the posterior distributions for Bayesian nonparametric and semiparametric models. Although the name of the package was motivated by the Dirichlet Process prior, the package considers and will consider other priors on functional spaces. So far, DPpackage includes models considering Dirichlet Processes, Dependent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 39 شماره
صفحات -
تاریخ انتشار 2010